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abswacl: (+,-)4-Demethoxy-S-fluoro-(7,8-trans)-daunomycinone is obtained by tottal synthesis and coupled 

with daunosamine to give 8-(S).fluomidarubicin-N-uifluoroacetate, the first anthracyclinc substituted with a 

fluorine atom on ring A. 

The introduction of fluorine into biologically active compounds is of growing interest because of rhe 

particular effects that fluorine can exert on the properties of the parent compound without altering its steric bulk.’ 

Here, we wish to report the total synthesis of 8-(S)-fluoroidarubicin-N-trifluoroacetate (la), the first ring A- 

fluorinated anthracycline, 2 the parent compound idarubicin, lb, (4-demethoxydaunorubicin), being a recently 

marketed powerful antitumor agent.3 This new chemical modification of antitumor anthracyclines stems from the 

observations that intranuclear DNA bound drug accumulation is responsible for cytoroxicity and that all 

anthracyclines having reached the clinical stage belong to the group showing the highest affinity for DNA.3 

la: X=F; R=COCF, 
lb: X=H; R=H 
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Recent studies5 have shown that the 9-OH group contributes to the stabilization of the complexes 

between daunorubicin and oligonucleotides through hydrogen bond interactions with N-3 and N-4 of a guanine. 

Thus, it was thought that the introduction of a fluorine atom at position 8 could reinforce the strength of such 

interactions at the intercalation site because of the electron withdrawing effects of the fluorine substituent. 

Scheme 1 

J h 

a) 3.butyn-Z-one, Nal, DMA, 65’C; b) Collidinium tosylate cat.. E.G., CgHg rell.: c) mCI’BA, CHCI3, r.t.; d) TFAAIH20. T.L.; e) HF/py; 

70%; f) BC13. CH2CIz. -78°C. then MeOH; g) pTSA cat.. E.G., CgHg. rcfl.; h) I’VPHI’, AIBN. Ccl, I&. then FCC; i) TFA r.t.. then 

MeOH. 

Racemic aglycon 11 (scheme 1) was synthetized following an adaptation of Cava’s route to 

anthracylinones.6 or,P-Unsaturated ketone 3 (m.p.=195-198°C) was obtained (80%) by trapping the 

orthoquinodimethane generated in situ from 1,4-dimethoxy-2,3-bis(bromomethyl)anthraquinone 27 with an 

excess of 3-butyn-2-one. Conversion of 3 into the corresponding epoxyketone Sb (m.p.=24&244OC) required 

the protection as the diethylene ketal (ethylene glycol, catalytic collidinium p-toluene sulfonate8 in a Dean Stark 

apparatus) before the epoxidation of the double bond (m-CPBA, CHCl3, r.t.). The action of 90% aqueous 

trifluoroacetic acid (r.t., lh) allowed to restore the ketone function (6.5% overall yield from 3).9 
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The introduction of fluorine was accomplished by means of Olah’s reagent’0 (r.t., 8 h). NMR spectral 

data” of the only fluorinated compound isolated (60% yield) are in agreement with the expected structure 6: 8~ 

4.76 (app. dt, lH, J = 49.6, 2.9; H-8), 6, 87.99 (d, Jc_8,~ = 177.2). ‘* Bromination of 7b (m.p.= 239-241’C 

dec., 85% yield from 6) was firstly attempted following the reported procedure for the non fluorinated 

compound,13 but many difficulties were encountered in monitoring the reaction and complex mixtures of 

products were obtained. Fortunately, bromination with polymer supported pyridinium hydrobromide perbromide 

(PVPHP)14 resulted easier to handle and to monitor by ‘H-NMR. So, on the base of this approach, we realized 

that the bromination step was less regioselective than it was reported in the case of the non fluorinated 

compound,15 and that at least one 7,10-dibrominated product was formed before the complete consumption of 

starting material. The latter observation obliged us to stop the bromination at SO-ho% conversion. Direct flash 

column cromathographyl6 of the crude reaction mixture on silica gel allowed recovery of starting material (30%/c), 

the hydrolysis of the brominated products and the purification of derivatives X 6~ 5.18 (lH, ddd; J = 2.3,9.6, 

13.7; H-7), 5.18 (lH, dd, J = 2.4, 45.7; H-S), 4.07-4.19 (4H, m; -OCH2CH20-), 3.70 (lH, d, J = 9.6; OH- 

7) and 9 6~ 5.45 (lH, broad dt, ; J = 3.0, 26.8; H-8), 4.82 (lH, dd, J = 3.1, 51.4; H-8), 2.56 (3H, d, J = 

2.8; CO-), which, in CDC13 solution, exists in equilibrium with 10 8” 5.70, (IH, d, J = 11.1; H-7); 4.98 

(lH, d, J = 54.8; H-8); 1.36 (3H, s, CH3-14). I7 For preparative purposes the mixture of 8,9, and 10 was 

almost quantitatively converted to 11 (20.25% from 7b) by trifluoroacetic acid treatment and methanolic work 

up. The latter compound was glycosidated with 3-N-trifluoroacetyl- 1,4-bis(O-p-nitrobenzoylj-L-daunosamine 

and TMSOTf as condensing agent, .l* the diastereomeric glycosideb were separated by flash column 

cromatography and the OH-4’ was deprotected (NaOH/ MeOH, 0°C 10 min.). Finally, the desired 

diasteroisomer la (27% from ll)l9 was selected on the base of the similarity of the CD curve to that of natural 

daunomycin. 
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